Spatiotemporal evolution of radio wave pump-induced ionospheric phenomena near the fourth electron gyroharmonic

نویسندگان

  • M. Ashrafi
  • M. J. Kosch
  • K. Kaila
  • B. Isham
چکیده

[1] On 12 November 2001, the European Incoherent Scatter (EISCAT) high-frequency (HF) radio wave transmitter facility, operating in O-mode at 5.423 MHz with 550 MW effective radiated power, produced artificial optical rings which appeared immediately at transmitter turn-on and collapsed into blobs after 60 s while descending in altitude. A similar descent in altitude was observed in the EISCAT ultra high frequency (UHF) ion line enhancements. Likewise, the stimulated electromagnetic emission (SEE) spectra changed as the pump frequency approached the fourth electron gyroharmonic due to pump-induced variations in electron concentration. Optical recordings were made from Skibotn at 630.0 and 557.7 nm and from Ramfjord in white light. The altitude of the initial optical ring and steady state blob has been estimated by triangulation. The evolution in altitude of the optical emissions, ion line enhancements, and SEE spectra all show a similar morphology but are generally not at exactly the same height. Typically, the optical height is close to and a few kilometers below that of the radar backscatter but sometimes above it, both of which are above the SEE generation altitude. There is evidence that upper hybrid (UH) waves, which propagate perpendicular to the magnetic field line, and Langmuir (L) waves, which propagate parallel to the magnetic field line, act simultaneously to accelerate electrons even in the steady state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinated optical and radar observations of ionospheric pumping for a frequency pass through the second electron gyroharmonic at HAARP

[1] On 4 February 2005, the High-frequency Active Auroral Research Program (HAARP) facility was operated in O and X mode while pointing into the magnetic zenith to produce artificial optical emissions in the ionospheric F layer. The pump frequency was set to 2.85 MHz to ensure passing through the second electron gyroharmonic of the decaying ionosphere. Optical recordings at 557.7 and 630 nm wer...

متن کامل

Ionospheric electron heating, optical emissions, and striations induced by powerful HF radio waves at high latitudes: Aspect angle dependence

[1] In recent years, large electron temperature increases of 300% (3000 K above background) caused by powerful HF-radio wave injection have been observed during nighttime using the EISCAT incoherent scatter radar near Tromsø in northern Norway. In a case study we examine the spatial structure of the modified region. The electron heating is accompanied by ion heating of about 100 degrees and mag...

متن کامل

Letter to the editor First direct observations of the reduced striations at pump frequencies close to the electron gyroharmonics

It is well known that the ionospheric plasma response to high-power HF radio waves changes drastically as the heater frequency approaches harmonics of the electron gyrofrequency. These include changes in the spectrum of the stimulated electromagnetic emission, reduction in the anomalous absorption of low-power diagnostic waves propagating through the heated volume, and reduction in the large sc...

متن کامل

Persistent enhancement of the HF pump-induced plasma line measured with a UHF diagnostic radar at HAARP

[1] Plasma lines excited by a powerful, high-frequency (HF) radio wave are studied using data obtained with an ultrahigh frequency (UHF) radar at HAARP (High Frequency Active Auroral Research Program) from 3 to 5 February 2005. Of particular interest is persistent enhancement of the radar backscatter power during HF on at several HF frequencies. The persistent enhancement is induced with the HF...

متن کامل

Phenomena in the ionosphere-magnetosphere system induced by injection of powerful HF radio waves into nightside auroral ionosphere

Experimental results from three ionospheric HF pumping experiments in overdense E or F regions are summarized. The experiments were conducted by the use of the EISCAT HF Heating facility located near Tromsø, Norway, allowing HF pumping the ionosphere in a near geomagnetic field-aligned direction. Distinctive features related to auroral activations in the course of the experiments are identified...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007